Consensus guidelines for managing acute severe ulcerative colitis in children: a joint statement from ECCO, ESPGHAN, and the Pediatric IBD Porto Group

Running title: Guidelines for managing acute severe colitis in children

Dan Turner¹, Simon P.L. Travis², Anne M. Griffiths³, Frank M. Ruemmele⁴, Arie Levine⁵, Eric I. Benchimol⁶, Marla Dubinsky⁷, George Alex⁸, Robert N. Baldassano⁹, Jacob C. Langer⁵, Robert Shamberger¹⁰, Jeffrey S. Hyams¹¹, Salvatore Cucchiara¹², Athos Bousvaros¹⁰, Johanna C. Escher¹³, James Markowitz¹⁴, David C. Wilson¹⁵, Gert van Assche¹⁶, Richard K. Russell¹⁷

For the ESPGHAN Pediatric IBD Porto group

*ALL AUTHORS CONTRIBUTED EQUALLY

¹Shaare Zedek Medical Center, Israel; ²John Radcliffe Hospital, Oxford, UK; ³The Hospital for Sick Children, University of Toronto, Canada; ⁴Université Paris Descartes, Paris, APHP, France; ⁵Wolfson Medical Center, Tel Aviv, Israel; ⁶Children's Hospital of Eastern Ontario, University of Ottawa, Ontario, Canada; ⁷Maxine Dunitz Children’s Health Center, Cedars-Sinai Medical Center, Los Angeles CA, USA; ⁸The Royal Children’s Hospital, Melbourne, Victoria, Australia; ⁹University of Pennsylvania, The Children's Hospital of Philadelphia, USA; ¹⁰Children's Hospital Boston, Harvard Medical School, Boston, MA, USA; ¹¹Connecticut Children's Medical Center, Hartford, Connecticut; ¹²Sapienza University of Rome, Italy; ¹³ErasmusMC-Sophia Children's Hospital, Rotterdam, the Netherlands; ¹⁴Steven and Alexandra Cohen Children's Hospital of New York, North Shore - LIJ Health System, USA; ¹⁵Child Life and Health, University of Edinburgh, Edinburgh Scotland, UK; ¹⁶University Hospital Leuven, Belgium; ¹⁷Royal Hospital for Sick Children, Glasgow, Scotland, UK

Funding: European Crohn's and Colitis Organization (ECCO)

Correspondence
Dan Turner MD, PhD
Head, Pediatric Gastroenterology and Nutrition Unit
Shaare Zedek Medical Center,
The Hebrew University; P.O.B 3235
Jerusalem 91031, Israel
Phone +972-50-8685841
Fax +972-2-6555756
email: turnerd@szmc.org.il
ABSTRACT

Aim: Acute severe ulcerative colitis (ASC) is a potentially life-threatening disease. We aimed to formulate guidelines for managing ASC in children based on systematic review of the literature and robust consensus process. This manuscript is a product of a joint effort of the European Crohn's and Colitis Organization (ECCO) and the Pediatric Inflammatory Bowel Disease (IBD) Porto group on behalf of the European Society of Pediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN).

Methods: A group of 19 experts in pediatric IBD participated in an iterative consensus process including two face-to-face meetings. Seventeen predefined questions were addressed by working subgroups based on systematic review of the literature.

Results: Recommendations and practice points were eventually endorsed with a consensus rate of at least 80% regarding: definitions, initial evaluation, standard therapy, timing of second line therapy, the role of endoscopic evaluation and heparin prophylaxis, how to administer second line medical therapy and how to assess response, surgical considerations, and discharge recommendations. A management flowchart is presented based on daily scoring of the Pediatric Ulcerative Colitis Activity Index (PUCAI).

Discussion: These guidelines provide clinically-useful points to guide the management of ASC in children. Taken together, the recommendations offer a standardized protocol that allows effective monitoring of disease progress and timely treatment escalation when needed.
1. WHAT IS CURRENT KNOWLEDGE
 - Severe ulcerative colitis is a potentially life-threatening condition
 - Current pediatric guidelines were extrapolated from the adult literature

2. WHAT IS NEW HERE
 - These are up-to-date pediatric guidelines for the management of severe ulcerative colitis
 - Based on systematic review of the literature and consensus among international experts, a day-by-day decision making flowchart is provided, based on daily scoring of the PUCAI
INTRODUCTION

Acute severe exacerbations of ulcerative colitis (ASC) constitute a medical emergency in children and adults. The introduction of intravenous corticosteroid treatment by Truelove et al in 1955 dramatically reduced mortality in this otherwise life-threatening condition. Nevertheless, steroid-refractoriness is common, making early recognition of ASC important so that appropriate medical and, if necessary, surgical treatment can be provided in timely fashion to minimize morbidity.

Adapting the 1955 Truelove and Witts’ classification (1), an ECCO statement defines ASC in adults as an exacerbation with at least 6 bloody daily stools and one of the following: tachycardia (>90 bpm), temperature >37.8 °C, anemia (hemoglobin <10.5 g/dL), or an elevated ESR (>30 mm/h) (2). With the validation of the Pediatric Ulcerative Colitis Activity Index (PUCAI) ASC was robustly defined in pediatric patients by a PUCAI of at least 65 points (3). This cutoff has been replicated in an independent cohort (4) and proven to predict clinically-relevant outcomes of children admitted for intravenous corticosteroid therapy (5, 6) (Appendix 1).

ASC in adults has been estimated to occur in 18-25% of all UC patients during 10 or more years of follow-up (7, 8). The increased prevalence of extensive colitis in children makes ASC more likely. In a retrospective analysis of a population-based UC cohort, 28% of children <15 years of age required hospitalization during a period of just 3 years (5).

The pooled steroid refractory rate in ASC across all pediatric studies has been found to be 34%, slightly higher than the pooled 29% adult rate (9, 10). In the pre-biological therapy era, the 1-year colectomy rate was as high as 50% in adults (11) and 61% in children (5).

Previously published pediatric guidelines on ASC are insufficiently detailed to allow the clinician to make rational decisions based on contemporary studies (12, 13). We aimed to develop guidelines for managing ASC in children based on a systematic review of the literature and a robust consensus process of an international working group of specialists in pediatric IBD. Selection of the working group was facilitated by an open call to all ECCO-registered members via email. These guidelines have been created and endorsed by ECCO and the Porto IBD working group of ESPGHAN.
METHODS

A list of 17 questions addressing management of ASC in children was developed by the steering committee and modified according to comments by other members of the working group. Each question was appraised independently based on review of evidence by 2 group members, who then together developed a written recommendation with justification. Grading of evidence was assigned according to the Oxford Centre for Evidence-Based Medicine (Appendix 2). Review of evidence included both pediatric and adult data, given the paucity in some areas of specific pediatric studies (14). Electronic searches were performed in January 2010 using Medline, Embase, CINAHL and the Cochrane Controlled Trials Register. The search strategies used is available upon request. Clinical guidelines, systematic reviews, clinical trials, cohort studies, case-control studies, diagnostic studies, surveys, letters, narrative reviews, and case series were retrieved.

Recommendations were discussed by the working group at two face-to-face meetings: during the ECCO annual meeting (Prague, February 2010) and during Digestive Disease Week (New Orleans, May 2010). The meetings were complimented by an email Delphi process which together provided the forum for reformulation of recommendations until agreement was reached. All statements and practice points were supported by at least 80% of the group and in most cases reflect full consensus.

The guidelines which follow include recommendations (boxed in the text) and ‘practice points’ that reflect common practice where evidence is lacking.
INITIAL STANDARD TREATMENT

Corticosteroids

Intravenous methylprednisolone, 1 to 1.5 mg/kg/day, is recommended to a maximum of 60 mg given in one or two divided daily doses [EL2, RG B]

Practice points:
1. Methylprednisolone is preferred over hydrocortisone because it has fewer mineralocorticoid effects.
2. Limited evidence exists to guide recommendations regarding rectal steroid treatment as adjuvant therapy in ASC. If the child tolerates enemas they may be attempted, because a beneficial effect cannot be excluded.

Corticosteroids constitute first line therapy of ASC since the landmark trials of Truelove et al (1, 15). Intravenous steroids reduced the 1-year mortality rate from 22-75% to 7% in adults (1, 16). No dose-ranging trials have been conducted in children. Two randomized, double-blind trials in adults with ASC have compared different corticosteroid regimens (17, 18). Of 31 patients without prior oral corticosteroid therapy, ACTH induced remission in 63%, versus 27% with hydrocortisone (p=0.025). However, in the 35 patients hospitalized after out-patient corticosteroid therapy, 53% responded in the hydrocortisone group and 25% in the ACTH group (17). Once daily methylprednisolone 1 mg/kg was as effective as continuous infusion (18). Among adults with UC, 60mg prednisolone once daily proved no more effective than 40mg, but had greater toxicity (19). Similarly, 40 mg oral prednisolone as a once daily dose was as effective as when given in divided doses (20). However, these studies were performed on ambulatory patients and the extrapolation to the acute severe setting may be inaccurate.

A meta-regression using data concerning 2175 adult patients from 33 published studies demonstrated no variation in efficacy with dosing within the range of 60 mg or greater intravenous methylprednisolone daily, while lower doses were seldom evaluated (9). Even high dose pulse steroids (1 gram methylprednisolone given once daily for 5 days) failed to achieve a greater than expected clinical remission rate (21), although the opposite has been recently proposed in a case series from Japan (22).

Most patients in a recent prospective multicenter pediatric cohort study of ASC received 1 to 1.5 mg/kg/day methylprednisolone up to 40-60 mg and achieved the expected response rate of 71% (95% CI 63-78) without dose-response effect (6). Finally, glucocorticoid bioassay, reflecting the total steroid activity in the serum, did not predict the need for second line therapy in children with ASC (23).

Antibiotic therapy

Empiric antibiotics cannot be recommended in all children with ASC but should be considered when infection is suspected and in toxic megacolon [Pediatrics EL5, RG D; Adults EL2b, RG B]
Practice point:

1. Since *C. difficile* infection is more common in ASC, a case can be made for empiric treatment pending toxin results, if *C. difficile* is locally common, especially if antibiotics have been recently prescribed.

Of eight adult clinical trials (2, 24), only 3 were explicitly in ASC (25-27), and these showed no difference in outcome when intravenous ciprofloxacin (26), metronidazole (27), or metronidazole and tobramycin (25) were used as an adjunct to steroid therapy. Of the remaining 4 studies of antibiotic usage in adult UC, only one showed evidence of benefit. Based on these studies, adult guidelines suggest that intravenous antibiotics should be used in ASC only if infection is considered likely (2, 24). There are no publications on antibiotic usage in the treatment of pediatric ASC and thus we found no reason to diverge from adult recommendations.

Heparin

There is no specific evidence to support the use of prophylactic heparin for preventing thromboembolic complications in children with ASC [EL5, RG D]

Meta-analyses have shown that heparin treatment is not effective for inducing remission in ASC (28, 29). Adult guidelines (2, 30) recommend using heparin prophylactically (*not* as a therapeutic adjunct) for preventing venous thromboembolic events that are clearly increased in adults with ASC (31). Based on experience and case reports (32-34), the group acknowledged that there is likely to be an increased risk for thromboembolic events in children with UC including ASC. In a recent population-based case-control study, the risk of venous thromboembolic events in UC was increased across all age groups but the absolute rate was much higher in the older population (27 deep vein thrombosis (DVT) cases per 10,000 person-years in the 0-20 years group (odd ratio 10 (95%CI 3.4-29.3) versus 207 per 10,000 in the >60 years old group (35)). Even in adults, the risk seems to be age-dependent. In a recent audit of current practice of 215 inpatient pediatric patients with UC, only 2% were given prophylactic heparin (http://ibdaudit.rcplondon.ac.uk/2008/). Therefore, the group agreed that routine heparin prophylaxis cannot be justified in children until better evidence is available to suggest that the benefit outweigh the risks.

5-aminosalicylic acid (5-ASA)

Interrupting 5-ASA (oral or rectal) in children with ASC is recommended upon admission. If patients are 5-ASA naive, introduction should be delayed until the recovery phase [EL5, RG D]

Oral 5-ASA preparations are effective for induction of remission in mild to moderate UC (36), including in children (37), but their role in ASC has not been studied. It was agreed that 5-
ASA is likely to have little benefit when aggressive medical treatment is administered. Moreover, children (38) and adults (2) may rarely experience worsening diarrhea with their introduction.

Nutritional support

1. **Continuation of regular diet is recommended. If this cannot be tolerated, enteral, or occasionally parenteral nutrition, is appropriate** [Pediatric EL4, RG C; Adults EL1b, RG A]

2. **Oral feeding should be avoided when surgery appears imminent and is contraindicated in cases of toxic megacolon** [EL5, RG D]
Practice points:
1. Continuous nutritional assessment, including measuring daily weight and calorie counts, is important.
2. If severe nausea and vomiting are present, or in the presence of severe abdominal pain, the patient may be unable to tolerate adequate nutrition enterally and would uncommonly require short-term parenteral nutrition.

Three clinical trials in adults showed no benefit of bowel rest in addition to corticosteroid therapy for ASC (39-41). The pooled response to medical therapy was comparable in cases and controls of the 96 adults in the three studies (22/48[46%] vs. 27/48[56%] respectively, P=0.22).

In a small retrospective pediatric study (42), 5 of 15 children with ASC who were treated with total parental nutrition (TPN) and bowel rest, required colectomy, reflecting the expected 33% failure rate. In the pediatric prospective study, 74/128 (58%) were not on solid foods by the third admission day, but in a multivariate analysis this was not associated with improved outcome even after controlling for disease activity (unpublished data). Complications of TPN, such as pneumothorax, electrolyte imbalance and sepsis, are well recognized.

Pain management

1. Children with severe or escalating abdominal pain should be investigated for bowel perforation and toxic megacolon [EL5, RG D]
2. Routine use of narcotics or NSAIDs is not recommended [Pediatrics EL5, RG D; Adults EL2b, RG B]

Practice points
1. Pain out of proportion with disease severity should be taken seriously and promptly lead to exclusion of toxic megacolon and bowel perforation.
2. Most patients with pain can be managed with relaxation techniques, hot packs, or oral acetaminophen (paracetamol).
3. Low-dose narcotics (equivalent to 0.1 mg/kg morphine), not frequently administered, are potentially safe, but should be approached with caution and with close monitoring for complications in specialized centers; high or repeated doses should be avoided.
4. Experience with other agents, such as clonidine, naloxone (with opioids) and cannabinoids have limited or no supporting evidence. A few case reports suggest that ketamine may be of use, but more evidence is required.

Opioids/narcotics:

Older reports detail high rates of narcotic and anticholinergic use in adult patients with toxic megacolon (TMC) (43, 44). This has translated to dogmatic recommendations stating that opioids are contraindicated in ASC due to the associated decreased intestinal peristalsis (2, 24). In a case-control study of pediatric patients with TMC, only 2/10 (20%) received narcotics prior to diagnosis of TMC (45). Narcotic use may be a marker of severe disease rather than a predisposing factor for TMC. Combined prolonged-release oxycodone and naloxone may
prevent gastrointestinal complications while managing pain, but this has not been assessed in UC (46).

Non-steroidal anti-inflammatory drugs (NSAID)
NSAIDs have been associated with exacerbation of disease activity in adults with UC (47, 48). A retrospective study found a 20-fold increase of IBD exacerbation or new onset disease with NSAIDs exposure, without a dose-effect relationship (47). Reports of selective COX-2 inhibition in adults with UC are mixed, with many showing increased risk of disease exacerbation or increased gastrointestinal symptoms (49-51).

Ketamine
Two case reports describe ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, for use in the pain management of IBD (52, 53). One of these (including two cases) suggests that ketamine as an infusion or patient/nurse-controlled is effective at reducing narcotic and NSAID use in children with ASC (53). The authors suggest an infusion dose of up to 40 µg/kg/hour or patient/nurse-controlled doses of 20-40 µg/kg with 10-30 minute lock-out periods.

Cannabinoids
Ample evidence from animal model indicates that cannabinoids modulate visceral sensation and pain, particularly in the inflamed gut (54-56). Our search revealed no related human studies.

Associated infections

Cytomegalovirus (CMV)

Children with steroid-resistant ASC should undergo a sigmoidoscopic examination for biopsy to exclude CMV infection [Pediatric EL5, RG D; Adult EL 3b RG B]

Practice point
1. Colonic biopsies should be stained by immunohistochemistry for CMV and if positive appropriate antiviral therapy should be initiated in consultation with an infectious diseases specialist.

 Most agree that only detection of CMV in intestinal tissue by histopathology ("CMV disease"), and not blood ("CMV infection"), is clinically meaningful in UC. CMV infection is common in patients on steroids and associated with a high rate of steroid-resistance (42-61% versus 0-68% in steroid-responsive patients). CMV disease is associated with steroid-refractoriness in 5-36%, compared to 0-10% of steroid-responsive patients (57). A case series in adults with moderate-severe colitis demonstrated frequent CMV infection during steroid therapy (as opposed to "CMV disease") that resolved spontaneously without antiviral therapy (58). There are case reports that have identified CMV also in the tissues of steroid-naive subjects (59, 60). In all studies, immunohistochemistry was more sensitive than routine histologic examination using
hematoxylin and eosin. Therapy with appropriate antiviral therapy has been sporadically reported to improve colitis activity in infected patients (59-63).

Clostridium difficile and stool evaluation

<table>
<thead>
<tr>
<th>Practice points:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Any child presenting with ASC should have stools screened for C. difficile toxins A and B and should be treated if found [Pediatric EL4, RG C; Adult EL2b, RG B]</td>
</tr>
<tr>
<td>2. Stools should also be sent for standard culture [EL4, RG C]</td>
</tr>
</tbody>
</table>

The frequency and severity of *C. difficile* infection appears to be increasing, especially in patients with IBD, in both children and adults (64-66). Adults with both *C. difficile* and IBD were found to have lengthier hospitalization and a mortality rate 4 times greater than adults with either condition alone (67). *C difficile* is the most common stool pathogen identified in adults with relapsing IBD, accounting for 6-19% of relapses (68, 69). Fifteen of 114 children hospitalized for ASC between 1991-2000 were found to have an intercurrent infection, of which 5 (4.4% of admissions) were due to *C. difficile* (5). Pascarella et al showed that 25% of children admitted with IBD had *C difficile* compared to only 9% of non-IBD controls (70).

C difficile infection can be identified by immunoassays or enzyme-linked immunosorbent assays (ELISAs) for toxin A and toxin B, and by cytotoxicity assay. Assay for only one toxin fails to identify most *C difficile* infections in pediatric IBD (71). Only ~50% of infected adults are diagnosed with a single stool sample assayed for both toxins, while 92% are ultimately identified by the fourth stool sample (65). Evaluation by endoscopic appearance of the colon is inadequate in IBD, in which typical pseudomembranes are commonly absent (65).

For severe cases, as in the case of ASC, a 10-day course of oral vancomycin is preferred (72). There is no clear evidence to support decreasing the dose of corticosteroids or immunomodulators, though in a retrospective survey, adults on immunomodulators with *C. difficile* appeared to have worse outcome (73). Other novel treatments recently proposed for *C. difficile* infection cannot yet be recommended for clinical practice (74).

Monitoring of disease activity during admission
Practice points

1. Endoscopic evaluation of the rectal mucosa in children should only be performed when the underlined diagnosis is unclear or to identify complications, most notably CMV colitis.

2. The risk of a full colonoscopy is too high in ASC and is not recommended.

Daily assessment of disease activity is the mainstay of managing ASC. The most significant predictor of failing medical therapy has consistently been found to be the severity of disease from the time of admission (5).

Clinical variables

Pulse rate and temperature have been shown to predict response to corticosteroids in adults with ASC (1, 9). In a post-hoc analysis on 227 children with acute severe UC, combining the data from the two largest pediatric cohorts to date (5, 6) temperature on the third hospital day was statistically higher in non-responders, but without clinical significance (36.9±0.6 vs. 37.2±0.64; p=0.01) and heart rate was similar (unpublished data). On the other hand, the number of daily stools, nocturnal stools and amount of blood, have been shown to reflect disease severity, also in children (5, 6, 9, 75, 76). The PUCAI is a clinical index that incorporates these variables in one weighted score with good discriminant and predictive validity in ASC (5, 6). It takes 1-2 minutes to complete and is very responsive to change (4, 77) (Appendix 1). Its limitation is a ‘ceiling effect’, in which once the highest score has been reached (i.e. 85 points) further discrimination in disease activity is impossible, but lower scores reproducibly predict outcome. It has been shown to perform well in children with ASC (5, 6).

Laboratory markers

Albumin, CRP, hemoglobin and ESR have been shown to have some predictive role in ASC by reflecting disease severity (1, 9, 75, 78). Electrolytes do not have a predictive role, but form part of the definition of toxic megacolon (see section). If calcineurin inhibitors are given, magnesium, creatinine and serum cholesterol should also be monitored during treatment to minimize toxicity. Fecal biomarkers (including calprotectin, lactoferrin, S100A12 and pyruvate kinase) currently have no role in monitoring disease progress of ASC, due to their low
responsiveness (79). Although calprotectin, and particularly pyruvate kinase, have some predictive role in ASC, they do not add to the clinical variables outlined above (79, 80).

Endoscopic evaluation

The degree of inflammation of the sigmoid-colon has been correlated with treatment outcome (81, 82), but no similar data exist in children. Moreover, there are no data to suggest that the endoscopic appearance adds to the predictive value of the simple clinical variables. It had been shown that sigmoidoscopic appearance did not improve the validity of the Powell Tuck index (83) or the PUCAI score (3).

CORTICOSTEROID FAILURE

When and on what grounds to introduce second line therapy

<table>
<thead>
<tr>
<th>Practice points:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A child with a PUCAI of >45 points on day 3 should be prepared for second line therapy [EL2b, RG B]</td>
</tr>
<tr>
<td>2. A PUCAI > 65 on day 5 should prompt initiation of second line therapy [EL2b, RG B]</td>
</tr>
<tr>
<td>3. Corticosteroids may be continued for additional 2-5 days in a child with a PUCAI of ≤60 and ≥35 points on day 5, before decision on second line therapy is made; those with PUCAI<35 points on day 5 are unlikely to require 2nd line therapy by discharge [EL2b, RG B]</td>
</tr>
</tbody>
</table>

Timely introduction of second line therapy has reduced mortality rate in adults with ASC from 7% with corticosteroid therapy to <1% (1, 9). Clinical guidelines recommend that second-line therapy be initiated if no response to corticosteroids is noted within 3-10 days of initiating intravenous therapy (12, 17, 78, 84-86). Predictive indices have utilized the third and the fifth day to determine whether escalation of therapy is required (5, 6, 75, 78, 87, 88). The combination of a high stool frequency and elevated CRP on day 3 were found to predict colectomy in 75% - 85% of patients using either the Oxford (stool frequency of 8/day or 3–8/day and CRP >45 mg/l) (75) or Sweden indices (stool frequency/ day+ 0.14x CRP mg/l) (88, 89); the Seo (87) and Edinburgh (78) scores may also have predictive ability in adult patients.

In children, Turner et al retrospectively evaluated 99 pediatric patients with ASC, of whom 46% were corticosteroid unresponsive (5). Comparing the PUCAI score to the Sweden,
Oxford and Seo indices, the authors concluded that the PUCAI, measured on the 3rd and 5th day of steroid treatment could be used to dictate introduction of second line therapy. A prospective study by the same authors in a larger cohort of 128 children with ASC found that the PUCAI was superior to all adult indices, CRP and fecal calprotectin (6). Aiming for sensitivity on day 3 (screening day), a PUCAI >45 screened for patients likely to fail steroids (NPV=94%, PPV=43%; P<0.001). The high NPV indicates that complete response is likely in those with PUCAI score of 45 points or less. Aiming for specificity on day 5 (execution day), a PUCAI score >70 optimally guided implementation of salvage therapy (PPV=100%, specificity=100%, and NPV=76%; P<0.001). A cutoff of >65 on the fifth day had a PPV=100%, specificity = 94% and NPV 78%.

Some of the children who have not responded to steroids within 5 days (i.e. PUCAI>65 and especially >70) may respond within the following weeks but differing treatment escalation is associated with steroid and UC-associated morbidity. In a post-hoc analysis of the two largest pediatric cohort studies combined (n=227 children with ASC), 15/45 (33%) of children with a PUCAI score of 35-60 at day 5 required salvage therapy by discharge compared with 1/54 (2%) children with a mild disease activity (i.e. PUCAI score<35 points) ((5, 6); and unpublished data).

Medical rescue therapies for pediatric UC (Table 1)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Whenever discussing second line therapy, surgery must always be seriously considered [EL4, RG C]</td>
<td></td>
</tr>
<tr>
<td>2. For pediatric patients failing intravenous corticosteroids the use of either calcineurin inhibitors or infliximab is recommended [Pediatrics EL4, RG C; Adult EL1b, RG A]</td>
<td></td>
</tr>
</tbody>
</table>

Practice points:
1. If a patient has previously failed an adequate trial of thiopurine therapy, then infliximab may be preferred, since it can be used for maintenance, unlike cyclosporine or tacrolimus that are typically given for 3-4 months to bridge to thiopurines. Infliximab may also be preferred in children with hypomagnesemia, hypocholesterolemia, hyperglycemia, azotemia and hypertension or neurological abnormalities, all associated with increased calcineurin toxicity.
2. Children intolerant of corticosteroids who have a subsequent episode of ASC may be treated with calcineurin inhibitors or infliximab as initial therapy, without corticosteroids.
3. Parameters that can be used to determine short term success to second line therapies may be:
 - Calcineurin inhibitors: improvement of PUCAI (≥20 points) within 5-7 days.
 - Infliximab: no worsening of PUCAI at 7 days, and improvement of PUCAI (≥20 points) within 2 weeks after the first infliximab infusion.
4. For guidance on dosing, route of administration and target therapeutic levels see table 1.

About 30-40% of pediatric ASC patients will require treatment escalation; therapeutic options include surgery, calcineurin inhibitors (i.e. cyclosporine and tacrolimus) and infliximab.
Cyclosporine (Table 1)

Cyclosporine (CsA) acts mainly through binding to the cytosolic protein cyclophilin of T-lymphocytes, thereby inhibiting calcineurin which is responsible for activating the transcription of interleukin 2 (90). Widespread use of CsA has been tempered by potentially serious side effects, including nephrotoxicity, serious infections, seizures, paresthesia, hypomagnesemia, hypertension, hypertrichosis, headache and hyperkalemia, and rarely, death (91). These events seem less frequent if oral administration is used (92).

In addition to many open-labeled studies, results from two clinical trials in adults have confirmed the short term effectiveness of CsA in ASC (93, 94). When results from controlled and uncontrolled adult trials are pooled, 70-85% of patients initially respond to cyclosporine, of whom 58-88% come to colectomy by 7 years (9, 75, 90, 95). It is customary to initiate CsA intravenously, although oral preparations (Neoral®) are reliably bioavailable (Table 1). While patients are on a triple immunosuppressive regimen (i.e. with thiopurines and steroids), prophylaxis against Pneumocystis jiroveci pneumonia is best considered and alertness for other opportunistic infections should be high.

Pediatric CsA data come from eight retrospective case-series (total of 94 children), in which, the rate and adverse events were similar to those reported in adults (10, 96). The pooled short term response was 81% (95% CI 76-86%) but only 39% (29-49%) avoided colectomy in the long term (10). Heterogeneity in the definition of disease activity, concomitant therapies, follow-up period (1-5 years) and dose and route of administration (half started with oral therapy) limit interpretation of these combined studies. Initial doses ranged from 0.7-7 mg/kg/day for IV and 4-8 mg/kg/day for oral. Trough levels used for monitoring range from 150 to 600 ng/ml. A better long term success rates were in part related to the introduction of azathioprine.

Tacrolimus (Table 1)

Potential advantages of tacrolimus over CsA include reliable oral absorption and apparently better tolerability. In a controlled trial of tacrolimus in 65 adults with moderate-severe UC (only 15 steroid-resistant), response at 14 days, was 68% in the high trough group (10-15 ng/ml), 38% in the low trough group (5-10 ng/ml), and 10% in the placebo group (97). Small, open-label case series in adults show response rates of 50-80% in ASC (98, 99). Adverse events include hyperglycemia, hypomagnesemia, neurotoxicity and hypertension (Table 1).

There are three small pediatric case-series evaluating a total of 24 children with ASC treated with tacrolimus, of whom 16 (67%) showed good initial response, but only 0-22% sustained response in the long term (10). Other patients within these publications included steroid-dependent patients or those with Crohn's colitis (100-102).

Infliximab (Table 1)

Six case-series have reported the use of infliximab in children with ASC (126 in total), with a pooled short and long term response rates of 75% (95%CI 67-83%) and 64% (56-72%), respectively (6, 10, 103). Short-term and one-year colectomy rates have declined since the use of infliximab in children with ASC to 9% by discharge and 19% by 1-year (6). In the only clinical trial in ASC, infliximab, administered to 45 adults as a single dose, reduced the number
of patients undergoing colectomy within 3 months (7/24 (29%) in infliximab group versus 14/21 (67%) in placebo group (89). Another study of 83 adults with ASC reported 12% requiring colectomy within 2 months (104). In this study two infusions appeared to be more effective than a single infusion. Positivity for pANCA was found predictive of a sub-optimal response to infliximab in one report of adult patients (105), but this was not replicated in children (103). The safety profile of infliximab given to children with ASC has been acceptable with no reported deaths.

How to determine treatment success of 2nd line medical therapy

The literature does not provide guidance on when treatment success or failure should be determined in children treated with salvage therapy. In adults, time to response is reported to be 5–7 days when using CsA and up to two weeks if tacrolimus or infliximab are used. Dealing with very sick children, it seems best not to wait more than a week after start of rescue treatment to determine treatment success or failure.

The role of third-line medical therapy

Sequential therapy (calcineurin inhibitor following infliximab, or vice versa) is not recommended [Pediatric EL5, RG D; Adults EL4, RG C]

Sequential therapy of CsA/tacrolimus followed by infliximab or vice versa may be successful in approximately 25–40% of adult patients (106–109), but this has not been studied in children. In one series, 19 patients with refractory ASC treated with infliximab after CsA or vice versa, the colectomy rate was 42% at 1 year and one patient died from sepsis (106). Another series from GETAID in France, analyzed sequential treatment with infliximab in 86 UC patients after CsA failure, or vice versa with a colectomy rate of 63% at 3 years (107). The associated risk of serious infections was high (16/86 patients) with one reported death from pulmonary embolism. Given the small number of patients, it is difficult to evaluate the real risk in patients receiving two powerful immunomodulators in sequence typically combined with corticosteroids. It seems that the risk is appreciable and it should be remembered that the mortality from emergency colectomy is close to zero in specialist centers. The aphorism that management of treatment refractory ASC is about saving lives and not saving colons is best recalled.

SURGICAL CONSIDERATION

Toxic megacolon (TMC) and radiography

1. Abdominal radiographs should be obtained in children with any sign of systemic toxicity, and subsequently as clinically indicated [EL4, RG D]
2. Diagnostic criteria for TMC should consist of radiographic evidence of transverse colonic dilatation (≥56 mm) plus signs of systemic toxicity [EL4, RG C]
3. Children with TMC should receive immediate surgical consultation, but they may be managed conservatively if vital signs are stable and there is no sepsis. If symptoms of toxicity worsen or do not resolve within 48–72 hours, immediate colectomy should be performed [EL 4, RG C]
4. Cyclosporine and anti-TNFs are not recommended in TMC [EL5, RG D]
Practical points:
1. Systemic toxicity from TMC may be rarely masked by steroids.
2. A transverse colonic diameter of >40 mm with signs of systemic toxicity may be sufficient to diagnose TMC in children younger than 10 years of age.
3. Intravenous antibiotics (such as ampicillin, gentamycin and and metronidazole), correction of electrolyte imbalance, food restriction and preparation for surgery compose the mainstay of initial therapy for TMC. Although rectal decompression tube and positional changes have long been practiced, objective evidence of benefit is limited.

Abdominal radiography has helped predict steroid failure in several studies (9) but it is used primarily to screen for complications (i.e. toxic megacolon and perforation). Since steroids can mask peritoneal signs, abdominal radiographs should be ordered on very low clinical suspicion. The distribution of transverse colonic dilatation in children over 11 years of age generally follows that of adults, in which a width over 55-60mm is associated with TMC in the appropriate clinical setting (5, 110). In younger children, however, this upper width range is 40mm (5).

The literature on TMC in children with IBD consists of case reports and small case-series (111-119). The most widely used diagnostic criteria for TMC was reported in a series of 55 cases in adult IBD patients (Table 2) (120). Adolescents with TMC were more likely to have fever, tachycardia, dehydration, and electrolyte abnormalities compared with age-matched controls of hospitalized UC patients without TMC (45). Altered level of consciousness and hypotension were very rare in both groups. Table 2 describes suggested pediatric criteria for the diagnosis of TMC based on this case-control study and experts' opinion.

In adults, mortality has been reported in 19-50% of patients with TMC (44, 121). In the pediatric study none died but 7/10 (70%) of children required colectomy by discharge (45). One case series demonstrated that positional changes combined with long tube insertion was associated with resolution of TMC (122). In a retrospective study of children with TMC due to Salmonella infection, tube placement was associated with a reduced risk of bowel perforation (123). A single case report describes the successful treatment of TMC with infliximab (124), but the potential associated risk in such very sick children should not be underestimated.

Is there a preferred surgery in children?

In the need for surgery in ASC, subtotal colectomy and ileostomy is recommended; subsequently pouch formation may be preferred [EL2b, RG B]

Practice points:
1. The pouch procedures (i.e. ileoanal pouch or ileal pouch-anal anastomosis), also known as "restorative proctocolectomy" are likely superior to a straight pullthrough (i.e. ileoanal anastomosis) because it is associated with acceptable early complication rates, lower early stool frequency, and better long-term continence. Ileorectal anastomosis cannot be recommended for most children, because of the high rate of failure requiring removal of
the remaining rectum. The advantages of the restorative proctocolectomy need to be balanced against the risk of chronic pouchitis and reduced fertility.

2. A three-stage approach should be considered in patients undergoing an emergency operation, those on high dose steroids and/or suffering from malnutrition, and those in whom the possibility of a diagnosis of Crohn's disease is appreciable (e.g. children younger than 5 years of age).

3. Restorative proctocolectomy without protecting ileostomy may be safe in selected children without risk factors (e.g. high dose steroids), and in whom the pouch procedure is completed smoothly.

In adults, restorative proctocolectomy has become the standard of care. The most important short term complication is an anastomotic leak; long term complications include pouchitis, incontinence and decreased fertility.

Should the surgery be done in one, two, or three steps?

The two questions are whether the reconstruction is best done at the same time as the colectomy, and whether there should be a protecting loop ileostomy. The decision is influenced by whether the patient is on high-dose steroids, since this is the primary predictor of anastomotic leaks. For a patient on high dose steroids, 17% of adult surgeons would recommend a three stage, and 82% a two stage operation (125, 126). A meta-analysis of 17 studies and 1,486 patients showed a lower risk of leak with a protective ileostomy, although functional outcomes were similar (127). This was not replicated in children (128). Of the many published adult studies, two match patients with similar strata and documented a higher incidence of pouch-related complications in those undergoing a one-stage pouch, but similar long term function (129, 130).

Ileorectal anastomosis, straight ileoanal pullthrough or restorative proctocolectomy?

A pediatric meta-analysis consisting of 5 studies and 306 patients, suggested that the straight ileoanal pullthrough was associated with a higher risk of failure and perianal sepsis, as well as a higher stool frequency and incontinence than restorative proctocolectomy (131).

A multicenter study with 112 children with straight ileoanal pullthrough and 91 with a J-pouch showed that stool frequency was higher in the pullthrough group, although the difference became less with longer follow-up (132). One adult study documented less incontinence with ileorectal anastomosis but more urgency, and ultimately the need to resect the remaining rectum in 53% of patients due to refractory proctitis, dysplasia or cancer (133).

Future fecundity is an important consideration in children undergoing pouch procedure. Adult data suggest that the risk of female infertility increases after restorative proctocolectomy from 12% to 26% and this should be seriously considered in the decision making (134). One long-term study of 52 children did not document any difference in fertility (135), but the authors did not compare the pullthrough to pouch with respect to this outcome. Fecundity is probably preserved after ileorectal anastomosis, since this avoids pelvic dissection (136). The final choice of surgery should be made by the patient, the gastroenterologist and the specialist colorectal surgeon after a full and informed discussion of the options.
Ways to minimize surgical complications

1. Delay in surgical intervention to enhance nutrition is not recommended [EL5 RG D]

2. Children undergoing colorectal surgery should be treated with antibiotic of appropriate spectrum starting an hour before the surgery and terminated within 24 hours after surgery [EL5, RG D]

3. Preoperative steroid administration is associated with an increased risk of anastomotic leak and infectious complications [EL2b RG B]. However, surgery should not be delayed to taper steroids [EL5, RG D]

Practice points:

1. A low serum albumin is a marker for an increased risk of post-operative infection; this emphasizes the importance of early decision-making before inflammation severity suppresses albumin synthesis and also the role of nutritional support.

2. Prophylaxis against venous thromboembolism is best considered for all children undergoing surgery for ASC. It should be started before surgery and continued until the patient is walking.

 Administration of steroids (≥ 20 mg methylprednisolone for ≥ 2 months) and severity of the patient's condition have consistently been associated with post-operative infections in retrospective studies in adults (137, 138). In children, pre-operative steroids, hemoglobin <10g/dL, or albumin <30g/L have been associated with greater rates of infection in a retrospective study of 51 children undergoing colectomy.

 Treatment with azathioprine does not seem to increase post-operative complication rate (139). Three of four studies in adults have concluded that infliximab given prior to elective colectomy does not increase the risk of post-operative complications (138, 140-142). An increased surgical morbidity after sequential infliximab-cyclosporine therapy (or vice versa) has been reported if colectomy is eventually indicated (143).

 The use of perioperative antibiotics is a recommendation of the National Surgical Infection Prevention Project (144). Similarly, despite the lack of clinical trials, the efficacy of prophylactic heparin during the peri-operative period is well established.

DISCHARGE CONSIDERATIONS

There are no studies that focused on hospital discharge in children. However in the prospective pediatric multicenter cohort of ASC, 76 of the 128 children were discharged with mild disease activity scores which did not predict the need for treatment escalation during the subsequent year (unpublished data from ref (6)). Reports describe the benefit of thiopurine maintenance therapy after an episode of ASC (145), but do not describe the optimal timing for starting therapy.
Practice points (based on consensus within the group)
1. The following criteria should all be considered before discharging a child following treatment for ASC:
 a. PUCAI≤35 points (i.e. no more than mild disease)
 b. Afebrile and stable vital signs
 c. Sufficient oral intake and good hydration
 d. Off pain medications
 e. Stable hemoglobin without the need for transfusion for at least two days
2. Once discharged, prednisone may be initiated at a dose 20% higher than the methylprednisolone dose given before discharge, to yield biologically equivalent dose (methylprednisolone is 20% more potent than prednisone).
3. Starting azathioprine is best delayed for two weeks after discharge, until it is clear that the initial response has been sustained. If calcineurin inhibitors have been used during the admission, azathioprine is best delayed until prednisone is tapered to 20mg daily, to reduce the toxicity of triple immunosuppression.
4. Oral 5-ASA should be introduced or reintroduced on hospital discharge.

SUMMARY
Guidance for the management of pediatric ASC is summarized in an algorithm to be used in conjunction with reading this document (Figure 1). It is clear that management decisions for ASC would be facilitated by further research (Table 3). These clinical management guidelines were developed to assist practitioners at all levels of health care, while recognizing that each patient is unique. The recommendations may, thus, be subject to local practice patterns, but serve as a general framework for the management of ASC in children. The development of the guidelines should now be followed by dissemination of the information to clinical practice.
REFERENCES

<table>
<thead>
<tr>
<th></th>
<th>Cyclosporine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial dosing</td>
<td>2 mg/kg/day continuous intravenous infusion. Once remission achieved convert to oral 5-8 mg/kg/day divided BID. Stop medication after 3-4 months.</td>
</tr>
<tr>
<td>Trough drug levels</td>
<td>Aim initially for 150-300 ng/ml, and 100-200 ng/ml, once remission achieved (for timing see below)</td>
</tr>
<tr>
<td>Tests before treatment</td>
<td>Measure blood pressure and blood tests: creatinine, glucose, electrolytes, liver profile; test and treat hypomagnesemia and hypocholesterolemia to decrease the risk of neurotoxicity (more with cyclosporine)</td>
</tr>
<tr>
<td>Main toxicity</td>
<td>Hypertension(^3), hyperglycemia, hypomagnesemia, immune suppression, azotemia(^2) (dose dependent), seizures(^4) (dose and hypocholesterolemia dependent), hirsutism (more with cyclosporine), tremor (more with tacrolimus); erythromycin, ketoconazole, and grapefruit juice can increase the cyclosporine and tacrolimus levels.</td>
</tr>
<tr>
<td>Monitor toxicity</td>
<td>Monitor every other day during induction, weekly for the first month and then monthly(^1): drug levels (starting after 3(^{rd}) dose), creatinine, glucose, electrolytes (including magnesium), lipid levels, blood pressure, neurological symptoms. Consider: measure creatinine clearance at baseline and initiate PCP prophylaxis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Tacrolimus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial dosing</td>
<td>0.1 mg/kg/dose orally BID. Stop medication after 3-4 months.</td>
</tr>
<tr>
<td>Trough drug levels</td>
<td>Aim initially for 10-15 ng/ml, and then 5-10 ng/ml, once remission achieved (for timing see below)</td>
</tr>
<tr>
<td>Tests before treatment</td>
<td>Documentation of negative tuberculosis testing and chest X-ray; consider varicella, hepatitis B and C serology in endemic areas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Infliximab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial dosing</td>
<td>5mg/kg over 2-4 hours; subsequent doses given 2 weeks and 6 weeks after the initial infusion. Some centers utilize higher doses (10mg/kg) if there is no response to the first dose of 5mg/kg(^5)</td>
</tr>
<tr>
<td>Trough drug levels</td>
<td>Not indicated</td>
</tr>
<tr>
<td>Tests before treatment</td>
<td>Frequent assessment of vital signs during infusion</td>
</tr>
</tbody>
</table>

\(^1\) \(500\)mg/infusion; \(1000\)mg/infusion \(2^{nd}\) and \(3^{rd}\) dose

\(^2\) Urine output <10 ml/hour; azotemia <2 mg/dl

\(^3\) Hypertension \(>140/90\) mmHg

\(^4\) Convulsions

\(^5\) \(100\)mg/infusion
If oral drug dose has been changed monitor levels one week later

2 Serum creatinine > 1.4 mg/dL or at least 33% over baseline (usually respond to cyclosporine dose adjustment)

3 Hypertension can be found in up to 40% of subjects and usually respond to calcium channel blockers (the latter, however, can increase cyclosporine levels);

4 Neurotoxicity (manifested as paresthesias, tremors, and seizures) is promoted by hypocholesterolemia (< 120 mg/dL) and hypomagnesemia (<1.5 mg/dL): if the latter occur dose of cyclosporine should be lowered

5 Maintenance therapy can be given every 8 weeks after induction, if clinically indicated

Table 2: Previously established adult and the currently suggested pediatric criteria for diagnosis of toxic megacolon

<table>
<thead>
<tr>
<th>Adult criteria (from Jalan et al. (120))</th>
<th>Suggested pediatric criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Radiographic evidence of colonic distention</td>
<td>A) Radiographic evidence of transverse colon diameter ≥56 mm (or >40mm in those <10 years) PLUS</td>
</tr>
<tr>
<td>B) At least three of the following:</td>
<td>B) Evidence of systemic toxicity, such as:</td>
</tr>
<tr>
<td>1. Fever >38 degrees Celsius</td>
<td>1. Fever >38 degrees Celsius</td>
</tr>
<tr>
<td>2. Heart rate >120/min</td>
<td>2. Tachycardia (heart rate >2 SD above mean for age)</td>
</tr>
<tr>
<td>3. Neutrophilic leukocytosis >10.5 x 10^8 /L</td>
<td>3. Dehydration</td>
</tr>
<tr>
<td>4. Anemia</td>
<td>4. Electrolyte disturbance (sodium, potassium or chloride)</td>
</tr>
<tr>
<td>C) In addition to the above, at least one of the following:</td>
<td>5. Altered level of consciousness or coma</td>
</tr>
<tr>
<td>1. Dehydration</td>
<td>6. Hypotension or shock</td>
</tr>
<tr>
<td>2. Altered level of consciousness</td>
<td></td>
</tr>
<tr>
<td>3. Electrolyte disturbances</td>
<td></td>
</tr>
<tr>
<td>4. Hypotension</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Suggested topics for future research in pediatric ASC

- Thrombotic complications in a pediatric cohort with ASC
- Dose-finding studies of corticosteroids in ASC in children
- Utilization of PUCAI in an independent patient cohort
- A randomized controlled trial of infliximab vs. calcineurin inhibitors
- Further delineating the role of CMV in ASC and its diagnosis
- Elucidating the risk for TMC after treatment with narcotics
APPENDICES

Appendix 1: Pediatric Ulcerative Colitis Activity Index (PUCAI)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Abdominal pain:</td>
<td></td>
</tr>
<tr>
<td>No pain</td>
<td>0</td>
</tr>
<tr>
<td>Pain can be ignored</td>
<td>5</td>
</tr>
<tr>
<td>Pain cannot be ignored</td>
<td>10</td>
</tr>
<tr>
<td>2. Rectal bleeding</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Small amount only, in less than 50% of stools</td>
<td>10</td>
</tr>
<tr>
<td>Small amount with most stools</td>
<td>20</td>
</tr>
<tr>
<td>Large amount (>50% of the stool content)</td>
<td>30</td>
</tr>
<tr>
<td>3. Stool consistency of most stools</td>
<td></td>
</tr>
<tr>
<td>Formed</td>
<td>0</td>
</tr>
<tr>
<td>Partially formed</td>
<td>5</td>
</tr>
<tr>
<td>Completely unformed</td>
<td>10</td>
</tr>
<tr>
<td>4. Number of stools per 24 hours</td>
<td></td>
</tr>
<tr>
<td>0-2</td>
<td>0</td>
</tr>
<tr>
<td>3-5</td>
<td>5</td>
</tr>
<tr>
<td>6-8</td>
<td>10</td>
</tr>
<tr>
<td>>8</td>
<td>15</td>
</tr>
<tr>
<td>5. Nocturnal stools (any episode causing wakening)</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>10</td>
</tr>
<tr>
<td>6. Activity level</td>
<td></td>
</tr>
<tr>
<td>No limitation of activity</td>
<td>0</td>
</tr>
<tr>
<td>Occasional limitation of activity</td>
<td>5</td>
</tr>
<tr>
<td>Severe restricted activity</td>
<td>10</td>
</tr>
</tbody>
</table>

SUM OF PUCAI (0-85)

For User’s guide and cutoff values for response, remission, mild, moderate and severe disease activity, refer to the original study (77).
Appendix 2: Levels of evidence and grades of recommendation based on the Oxford Centre for Evidence Based Medicine (for details see http://www.cebm.net/levels_of_evidence.asp#refs)

<table>
<thead>
<tr>
<th>Level</th>
<th>Diagnostic study</th>
<th>Therapeutic study</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Systematic review (SR) with homogeneity of level 1 diagnostic studies</td>
<td>Systematic review (SR) with homogeneity of randomized controlled trials (RCTs)</td>
</tr>
<tr>
<td>1b</td>
<td>Validating cohort study with good reference standard</td>
<td>Individual RCT (with narrow Confidence Interval)</td>
</tr>
<tr>
<td>1c</td>
<td>Specificity or sensitivity are so high that a positive or a negative results rules out or in the diagnosis</td>
<td>All or none</td>
</tr>
<tr>
<td>2a</td>
<td>SR with homogeneity of level >2 diagnostic studies</td>
<td>SR (with homogeneity) of cohort studies</td>
</tr>
<tr>
<td>2b</td>
<td>Exploratory cohort study with good reference standards</td>
<td>Individual cohort study (including low quality RCT; e.g., <80% follow up)</td>
</tr>
<tr>
<td>2c</td>
<td></td>
<td>“Outcomes” research; ecological studies</td>
</tr>
<tr>
<td>3a</td>
<td>SR with homogeneity of 3b and better studies</td>
<td>SR with homogeneity of case-control studies</td>
</tr>
<tr>
<td>3b</td>
<td>Non-consecutive study; or without consistently applied reference standards</td>
<td>Individual case-control study</td>
</tr>
<tr>
<td>4</td>
<td>Case-control study, poor or non-independent reference standard</td>
<td>Case-series (and poor quality cohort and case-control studies)</td>
</tr>
<tr>
<td>5</td>
<td>Expert opinion without explicit critical appraisal, or based on physiology, bench research or “first principles”</td>
<td>Expert opinion without explicit critical appraisal, or based on physiology, bench research or “first principles”</td>
</tr>
</tbody>
</table>

Grading of recommendation

A Consistent level 1 studies
B Consistent level 2 or 3 studies or extrapolations from level 1 studies
C Level 4 studies or extrapolations from level 2 or 3 studies
D Level 5 evidence or troublingly inconsistent or inconclusive studies of any level