Eosinophilic syndromes

Mike Levin
Red Cross Allergy Clinic

Eosinophilic syndromes Levin
March 2012
Mast cells, basophils, eosinophils

Express many of the same receptors and cytokines but different effector functions

- **Mast cells:** Tissue resident
 Immediate hypersensitivity
 Preformed and newly synthesised mediators
 TNF alpha, IL3, IL5, IL13, GM-CSF, little IL4

- **Basophils:** Circulating
 Home to allergic inflammation
 Preformed and newly synthesised mediators
 IL4, IL13, GM CSF, little IL5

- **Eosinophils:** Resident in GI tract
 Home to allergic inflammation
 Effector function through granule proteins
Eosinophilic syndromes Levin
March 2012
Eosinophils

• Multifunctional white blood cells
• About 1-3% of circulating leukocytes
• Range 0 to 0.5×10^3/mm3
• Normally reside in mucosal tissues such as the GI tract (except for oesophagus)
• Key cell of allergic inflammation
• Organ morphogenesis
• Innate immune responses
Eosinophils

- Derived in bone marrow
- Enter the circulation as mature leukocytes
- Migrate to tissues
- Life span in blood: 24 hours
- Tissue : blood ratio of 100:1
Eosinophilic syndromes

Eosinophil Morphology

- Primary granules
- Distinctive bi-lobed nucleus
- Lipid bodies
- Scanty endoplasmic reticulum
- Charcot–Leyden crystals (only seen in cytoplasm during activation)
- Specific secondary granules

Eosinophilic syndromes Levin
March 2012
• Secondary granules
• Nucleus
• Lipid bodies
• Primary granules

Eosinophilic syndromes Levin
March 2012
Eosinophil basic proteins

- Major basic protein
- Eosinophil cationic protein
- Eosinophil peroxidase
- Eosinophil derived neurotoxin
Eosinophil basic proteins

• Major basic protein
 • Helminth parasites and bacteriocidal
 • Cytotoxic to airway epithelium
 • BHR
 • Activates basophils and mast cells
 • Platelet agonist
 • Activates complement

• Eosinophil cationic protein
• Eosinophil peroxidase
• Eosinophil derived neurotoxin

Eosinophilic syndromes Levin
March 2012
Eosinophil basic proteins

• Major basic protein

• Eosinophil cationic protein
 • Weak ribonuclease (RNase) activity
 • Toxic to parasites and bacteria
 • Toxic to RNA pneumoviruses (incl RSV)
 • Cytotoxic to tumours and epithelium

• Eosinophil peroxidase

• Eosinophil derived neurotoxin
Eosinophil basic proteins

- Major basic protein
- Eosinophil cationic protein
- Eosinophil peroxidase
- Eosinophil derived neurotoxin
 - Strong RNAse activity
 - Weakly toxic to parasites
 - Toxic to RNA pneumoviruses (incl RSV)
 - Activates dendritic cells
 - TH2 polarisation
Eosinophil basic proteins

• Major basic protein
• Eosinophil cationic protein
• Eosinophil peroxidase
 • Toxic to mammalian cells by oxidising halides, pseudohalides and nitric oxide
 • Bacteriocidal
 • Cytotoxic to airway epithelium
• Eosinophil derived neurotoxin
Measuring ECP

- Also known as ribonuclease 3
- ECP is released during degranulation of eosinophils

- Monitoring eosinophilic inflammation
- Monitoring asthma “activity”
- Severity? Symptom onset?
- Correlates with eczema clinical score
Lancet labs 2007-2011

<table>
<thead>
<tr>
<th>Test</th>
<th>Sept 07 – Sept 08</th>
<th>Sept 08 – Sept 09</th>
<th>Sept 09 – Sept 10</th>
<th>Sept 10 – Sept 11</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgE</td>
<td>30 199</td>
<td>32 488</td>
<td>33 520</td>
<td>33 641</td>
<td>129 848</td>
</tr>
<tr>
<td>ECP</td>
<td>363</td>
<td>324</td>
<td>314</td>
<td>132</td>
<td>1 133</td>
</tr>
<tr>
<td>CAP</td>
<td>201 941</td>
<td>244 597</td>
<td>258 104</td>
<td>250 109</td>
<td>954 751</td>
</tr>
</tbody>
</table>

Eosinophilic syndromes Levin
March 2012
Development

- Develop and mature in bone marrow
 - Differentiate from myeloid precursors in response to cytokines IL-5, IL-3, GM-CSF
 - Transcription factors GATA-1, PU.1, c/EBP
- Exit to circulation
- Home to GI tract, diseased tissues
- Do not return to blood

Eosinophilic syndromes Levin
March 2012
Migration

Mechanisms regulated via IL 5, 4, 13 others
Migration and survival

• migrate to inflammatory sites
 • CCL11 (eotaxin-1), CCL24 (eotaxin-2)
 • CCL5 (RANTES)
 • leukotriene B4 (LTB4)

• Activated by Th2 cytokines IL-5, GM-CSF, and IL-3

• Eosinophils die by apoptosis or necrosis
 • IL-5, IL-3, GM-CSF, Ifn-γ prolong survival
 • IL-5, GM-CSF delay apoptosis, promote priming and activation
IL-5

- IL5 \(\rightarrow\) IL 5 receptor
- \(\beta_c\) subunit stimulation \(\rightarrow\) phosphorylation of tyrosine kinases, Jak2, Lyn, Syk
- A tyrosine kinase is an enzyme that can transfer a phosphate group from ATP to a protein in a cell
- It functions as an "on" or "off" switch in many cellular functions

Eosinophilic syndromes Levin
March 2012
IL-5

• Tyrosine kinase stimulation of cellular function
 • Jak2 → STAT1 → transcription of nuclear factors to prevent apoptosis
 • Lyn, Syk → Ras-Raf1-MEK-ERK pathway → stimulates cell division via mitosis
• Proliferation of eosinophils

Eosinophilic syndromes Levin
March 2012
Eosinophilia

- About 1-3% of circulating leukocytes
- Range 0 to $0.5 \times 10^3/mm^3$
- Diurnal variation: Low in am, high in pm
- 40% variation in counts throughout the day
- Mild: $0.5 to 1.5 \times 10^3/mm^3$
- Moderate: $1.5 to 5.0 \times 10^3/mm^3$
- Marked: $> 5.0 \times 10^3/mm^3$
Common causes

- Allergy: Eczema, Asthma, Rhinitis, Urticaria
- Parasite infestation: GI, lung, skin
- Drug allergies
- Allergic skin diseases
- Some forms of malignancy
- Systemic autoimmune diseases (e.g. SLE)
- Vasculitis (e.g. Churg-Strauss syndrome)
Hypereosinophilic syndrome

• Blood eosinophilia >15,000/mm³ for > 6 months (or death before 6 months)
• No parasite, allergic or other cause of eosinophilia
• Organ involvement
 • CVS
 • GIT
 • CNS
 • Systemic symptoms
Hypereosinophilic syndrome

• Very rare
• Mean age of presentation of 33 years
• Males (9:1)
 • Systemic symptoms: fatigue, pain, fever, night sweats and pruritus
 • GI: Diarrhoea, abdominal pain and nausea
 • CVS: Chest pain and breathlessness
 • Respiratory: shortness of breath, and dry cough.
Organ involvement

- Blood: thrombocytopenia, hypercoagulability
- Cardiac: CMO, valve abnormalities, pericardial effusion, thromboembolic disease
- Resp: pneumonitis, pulmonary emboli, pleural effusion, eosinophilic infiltrates
- CNS: CVA, confusion, ataxia, peripheral neuropathy
- GIT: Inflammation, infarction of the gut, splenomegaly, ascites, hepatitis, pancreatitis
- Skin: dermatitis, urticaria, papular rashes
- Eyes: episcleritis, retinal thrombi
- ENT: sinusitis

Eosinophilic syndromes Levin
March 2012
Prognosis

- 5-year survival 80%
- Death from heart failure
- Treatment up till 2000: Steroids
Imatinib: Gleevec

- Treats chronic myeloid leukemia (CML), gastrointestinal stromal tumors and > ten other cancers
- May 2001: Gleevec receives FDA approval in fastest ever approval time
- May 2001: Cover of TIME magazine
- 2009: Manufacturers receive the Lasker-DeBakey Clinical Medical Research Award for "converting a fatal cancer into a manageable chronic condition"
- 2012: awarded the Japan Prize for their work
CML from pathology to cure

• 1960: Scientists at the University of Pennsylvania notice one chromosome in many CML patients was shorter than normal.
• The stubby chromosome was nicknamed “the Philadelphia chromosome”
• First time that a chromosomal defect was linked to cancer
CML from pathology to cure

- 1973: Researcher at the University of Chicago discovers the missing end of the short chromosome had moved and fused with another chromosome
CML from pathology to cure

- 1980s: Gene mapping shows that the broken chromosomes produce a cancer-causing protein
- 1986 and 1987: Researchers identify the protein as a tyrosine kinase
- Fusion between Abelson (Abl) tyrosine kinase gene at chromosome 9 and
- break point cluster (Bcr) gene at chromosome 22
- resulting in the chimeric oncogene Bcr-Abl
- and a constitutively active Bcr-Abl tyrosine kinase

Eosinophilic syndromes Levin
March 2012
• Bcr-Abl changes the cell's normal genetic instructions, causing a constant signal to produce white blood cells.
• Gleevec blocks Bcr-Abl and “cures” CML without any toxic effect on other cells!
• Bcr-Abl has similar binding site to Src family kinases Lck and Lyn
HES: FIP1L1-PDGFRA

- PDGFRA is a type III tyrosine kinase
- Juxtaposition of FIP1L1 to PDGFRA → deregulated PDGFRA kinase activity
- FIP1L1-PDGFRA, a novel fusion gene on chromosome 4q1
- First description of a gain-of-function fusion gene from an interstitial chromosomal deletion rather than a reciprocal translocation
- Hypereosinophilic syndrome and chronic eosinophilic leukemia
Treatment of HES

- Imatinib mesylate: Gleevec
- High dose steroids
- Mepolizumab
- Hydroxyurea
- Interferon alpha
- Vicristine
- Cyclosporin
- PUVA therapy
Anti IL-5

- Among potential therapies for HES not responsive to imatinib, mepolizumab appears to be the most effective
- Humanized anti-IL-5 monoclonal antibody
- 95% had decreases in their eosinophil counts that yielded levels of less than 600/μL
- 87% of patients able to lower required steroid dose.
Tissue specific causes

- Lung
- Skin
- GIT
Tissue

• Lung
 • Asthma
 • Parasite infestation
 • Eosinophilic bronchitis
 • Eosinophilic pneumonia
 • Fungal colonisation
 • ABPA
 • COPD
 • Churg strauss
 • Ideopathic pulm fibrosis
 • Lung carcinoma

Eosinophilic syndromes Levin
March 2012
Asthma

- Eosinophilic inflammation, mucus hypersecretion, and airway hyperresponsiveness
- Eosinophils a target for therapy
- Anti-IL-5 and anti-IL-13 monoclonal antibodies
- Anti-IL-5 ineffective in non-selected patients. Reductions in asthma exacerbations in those with sputum eosinophilia
ABPA

- Hypersensitivity to Aspergillus fumigatus
- Peripheral eosinophilia is common
- Dyspnoea
- Productive cough
- Wheezing
- Poorly controlled asthma despite maximal therapy
- Fleeting pulmonary infiltrates. Central bronchiectasis
ABPA

<table>
<thead>
<tr>
<th>Asthma</th>
<th>Eosinophilia</th>
<th>Precipitating antibodies to Aspergillus</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of infiltrates on chest X-ray</td>
<td>Elevated total IgE</td>
<td>Increased serum IgE to Aspergillus</td>
</tr>
<tr>
<td>Central bronchiectasis</td>
<td>Positive skin prick test to Aspergillus</td>
<td></td>
</tr>
</tbody>
</table>

Eosinophilic syndromes Levin
March 2012
ABPA

- Treatment with oral corticosteroids
- Many side effects
- Itraconazole for 6 months decreases total IgE, decreases eosinophil levels, and decreases need for prednisone
- No data on anti-IL-5 monoclonal antibodies or anti-IL-5 receptor therapies
Churg Strauss

- Autoimmune vasculitis with eosinophilia
- Refractory asthma
- Chronic sinusitis
- Transient pulmonary infiltrates and "pneumonia"
- Fatigue
- Weight loss
Churg Strauss

- Medium and small vessel vasculitis
- Purpura, urticarial type or maculopapular
- End organ damage
 - vasculitis in the small bowel, as well as eosinophilic inflammation of the GI tract
 - Peripheral neuropathy
 - CMO, pericarditis
Churg Strauss

- Associations: Montelukast and omalizumab?
- Treatment
 - Prednisone
 - Azathioprine
 - Methotrexate
 - IVIG
- Anti-IL-5 or anti-IL-5-receptor-α antibody
 - Decrease blood eosinophilia significantly
Eosinophilic pneumonias

- Rare disorders
- Acute or chronic eosinophilic pneumonia
- Pathophysiology largely unknown
- Galectin-9 (eosinophil chemoattractant) increased in BAL fluid
- Antibiotic use and smoking have been associated with its onset
- Acute eosinophilic pneumonia, patients respond to corticosteroids
Chronic eosinophilic pneumonia

- Fever, fatigue, cough, and pulmonary infiltrates
- CT: consolidation, ground-glass opacities or band-like subpleural opacities
- Middle aged; female > male
- BAL eosinophils
- Responds to prolonged therapy with prednisone
- Relapse common
Skin

• Eosinophils usually not present in the skin
 • Allergy: AD, urticaria, drug reactions (DRESS)
 • Infections: HIV, parasites, insect bites, erythema chronicum migrans
 • Autoimmune: Bullous pemphigoid, dermatitis herpetiformis
 • Erythema toxicum neonatorum
 • Hyper IgE syndrome
 • Eosinophilic cellulitis (Wells sy, hyper-eos sy)
 • Neoplasms (histiocytosis, chronic eosinophilic leukaemia, AML, CML, myelodysplasia, HES)
Skin disease

- Atopic dermatitis
- Urticaria
- Drug reactions
- Episodic angioedema
- Eosinophilic cellulitis (Wells syndrome).
Well’s syndrome

- Uncommon disorder that mimics cellulitis
 - Bright red at first
 - Fades over four to eight weeks
 - Leaving green, grey or brown patches
 - Can blister
 - Most commonly on the limbs
 - Also trunk

- Lethargy and fever in 25%

Eosinophilic syndromes Levin
March 2012
Well’s syndrome

- Skin biopsy
 - significant eosinophilic infiltrate
 - presence of flame figures
 - no evidence of vasculitis

- Aetiology is unclear. Patients may have several episodes during their lifetime

- Oral steroids (Mild cases topical steroids)

- Other treatments include minocycline, dapsone, griseofulvin, ciclosporin and oral antihistamines
Drug reactions

• Drug rash with eosinophilia and systemic symptoms (DRESS)
• Uncommon but clinically important
• Delayed, type IV immune response
• Begins 1–8 weeks after initiation of the offending agent
• Antiepileptics and antimicrobials (tetracyclines and sulfonamides)
DRESS

- Rash
- Fever
- Lymphadenopathy
- Pharyngitis
- Fatigue
- 30% eosinophilia
- Hepatitis 50%, nephritis 30%
- Fatalities related to end organ damage

Eosinophilic syndromes Levin March 2012
RegiSCAR criteria. Three of the four starred criteria required for diagnosis

Japanese consensus group criteria. Seven criteria or the first five criteria (atypical)

Hospitalization

Reaction suspected to be drug-related

Acute Rash*

Fever > 38° C*

Lymphadenopathy in at least two sites*

Involvement of at least one internal organ*

Blood count abnormalities (lymphopenia or lymphocytosis*, eosinophilia*, thrombocytopenia*)

Maculopapular rash developing > 3 weeks after starting the suspected drug

Prolonged clinical symptoms 2 weeks after discontinuation

Fever > 38° C

Liver abnormalities (ALT > 100 U/L) or other organ involvement

Leukocyte abnormalities

Leukocytosis (> 11 x 10⁹/L)

Atypical lymphocytosis (>5%)

Lymphadenopathy

Human herpesvirus 6 reactivation

Eosinophilic syndromes Levin

March 2012
DRESS

- Human herpes virus 6 in a subset of patients
- Symptoms resolve with removal of the drug
- Supportive and symptomatic therapy
- Systemic corticosteroids
Eosinophilic renal disease

- Interstitial nephritis
- Fever
- Arthralgias
- Rash
- Renal failure
- Eosinophilia and eosinophiluria in small proportion but highly specific
Interstitial nephritis

• Medications
 • NSAIDs esp aspirin
 • Antibiotics such as penicillin and cephalexin, rifampicin, sulfa drugs, quinolones
 • Diuretics, allopurinol, and phenytoin

• Pyelonephritis
• Removal of the drug
• Corticosteroids are controversial
• Nutrition
• Supportive therapy
EGIDs

- Diverse collection of diseases
- Inappropriate accumulation of eosinophils in GI tract
- 25–50% of patients have eosinophilia
- Eosinophilic oesophagitis most common
- EoE diagnosis is on the rise
- Increasing recognition from increased endoscopy and biopsy
EGIDs

• GIT

 • Eosinophilic oesophagitis
 - Primary
 - Reflux
 - Eosinophilic gastroenteritis
 - Parasite infections
 - Connective tissue diseases eg scleroderma
 - Leiomyomatosis
 - HES

 • Eosinophilic gastroenteritis

 • Eosinophilic colitis
Eosinophilic Oesophagitis

- Male predilection, paediatric to adult populations
- Mean age in children ranges from 7-10 years, and 30-40 years in adults
- Adults: Longstanding dysphagia
 - Food impaction, reflux symptoms, vomiting
 - Food allergy 25%, atopy 46%
- Children
 - Abdominal pain 30%, vomiting 30% and failure to thrive 20%
 - Asthma 36.8%, rhinitis 57.4%, food allergy 46%, eczema
 - Family history of atopy 73.5%

Eosinophilic syndromes Levin
March 2012
Eosinophilic syndromes Levin
March 2012
Eosinophilic Oesophagitis

- Eosinophilic infiltration of the squamous epithelium
 - >15/HPF
 - On adequate doses of anti reflux treatment
 - After control of allergic rhinitis

- Diagnostic sensitivity of 100% if 5 biopsies taken

- GERD can increase eosinophils <10/HPF

- Proximal vs distal pathology
 - Mid or upper oesophageal biopsies with increased eosinophils is more specific for eosinophilic oesophagitis

- Other features
 - Basal zone hyperplasia
 - Increased papillary size
 - Layering of eosinophils → aggregates or microabscesses
Eosinophilic Oesophagitis

- Skin prick tests and patch
- IgE only for associated immediate food hypersensitivity
- Dietary therapy: empiric / guided
- Anti-inflammatory therapy: Steroids
- Anti-IL-5: Substantial reduction in the number of eosinophils but little clinical resolution
- Anti-IL-13: Phase I clinical trials
EGIDs

• GIT
 • Eosinophilic oesophagitis
 • Eosinophilic gastroenteritis
 – Primary
 – Celiac
 – Connective tissue
 – Parasite infections
 – IBD
 – Churg Strauss
 – HES
 • Eosinophilic colitis
Eosinophilic gastroenteritis

- Presentation depends on
 - location
 - depth
 - extent of bowel wall involvement

- Chronic relapsing course

- mucosal, muscular and serosal types
Eosinophilic gastroenteritis

- **Mucosal**
 - vomiting, dyspepsia, abdominal pain, diarrhea, blood loss in the stools, iron deficiency anemia, malabsorption, protein-losing enteropathy, and failure to thrive.

- **Muscularis**
 - gastrointestinal obstructive symptoms mimicking pyloric stenosis or gastric outlet syndrome.

- **Serosal**
 - bloating, exudative ascites, and higher peripheral eosinophil counts.
Eosinophilic gastroenteritis

- Less likely to be food allergy related
- Elimination of foods has variable effects
- Supportive treatment
 - Oral steroids, entocort
 - Oral cromolyn
- Uncommonly respond to montelukast, ketotifen, suplatast tosilate, and mycophenolate mofetil
EGIDs

• GIT
 • Eosinophilic oesophagitis
 • Eosinophilic gastroenteritis
 • Eosinophilic colitis
 – Primary
 – Eosinophilic gastroenteritis
 – Celiac
 – Connective tissue
 – Parasite infections
 – IBD
 – Churg Strauss
 – HES

Eosinophilic syndromes Levin
March 2012
Eosinophilic colitis

• Least frequent of EGIDs

• Acute self-limited bloody diarrhea in otherwise healthy infants
 • benign, frequently food-related

• Chronic relapsing colitis in young adults
 • Fever, diarrhoea, bloody stools, constipation, obstruction/strictures, acute abdominal pain, and tenderness
 • Aggressive medical management including: glucocorticoids, entocort, antihistamines, leukotriene receptors antagonists as well as anti IL-5 and anti IgE.
Immunodeficiency

- HIV
- Hyper Ig-E syndrome
- Omenn Syndrome
Ommenn syndrome

• Rare form of SCID
• Autosomal recessive mutations in the RAG1 and RAG2 genes
 • Altered VDJ recombination and impaired T- and B-cell maturation.
 • Absent to very low levels of circulating T and B cells
 • Low immunoglobulin levels
 • Immune dysregulation
 • Profound eosinophilia and lymphocytosis
Omenn syndrome

• Diagnosed in 1st 6 months
 • Severe eczema-like rash
 • Failure to thrive
 • Chronic diarrhoea
 • Lymphadenopathy
 • Recurrent infections

• Therapy
 • Treat infections, IVIG
 • Good nutrition, hydration
 • Correction of anaemia
 • Bone marrow transplantation
Parasites

• Most common cause of eosinophilia

• Helminthic parasites
 • Flatworms (flukes, tapeworms) and roundworms
 • Strongyloides (pinworm) infection can become invasive and fatal in patients treated with prednisone

• Dientomeba fragilis
 • travellers diarrhoea, chronic diarrhoea, fatigue and failure to thrive.

• Isopora belli
 • non-bloody diarrhea with crampy abdominal pain, which can last for weeks and result in malabsorption and weight loss.
Toxocara canis

• Dog roundworm
• Visceral larva migrans
• Migrating through the intestinal wall
• Travel through blood to organs
• liver, heart (myocarditis) and CNS (dysfunction, seizures, and coma)
• Eyes: ocular larva migrans
Eosinophils

- Important cells
- Many functions, not just worm defence
- Basic proteins major effector mechanism
- Develop, migrate and survive under control of IL-5
- Many common and uncommon causes of eosinophilia
- IL-5 and IL-5 related tyrosine kinase potential targets for new therapies