IgE Regulation and Hyper IgE Syndrome

Dr S Naidoo
FcPaeds(SA) DipAllerg(SA)
Immune Disorders

• Immunodeficiency – underperforms and leaves host vulnerable to infection
• Autoimmune – fails to distinguish host tissue vs pathogen, results in clinical disease
• Atopic – immune responses mounted to innocuous proteins which results in clinical disease
• IgE, mast cells, basophils, and eosinophils

Kelly D. Stone, MD, PhD, Calman Prussin, MD, and Dean D. Metcalfe, MD

JACI 2010

• Regulation and biology of Ig E, chapter 4

Pediatric Allergy

Leung D, Sampson H First Edition
immunoglobulins

- isotype specific constant chains: interact with receptors and cytokines
- During immunoglobulin synthesis – DNA transcription, excision and repair to produce the variable regions (antigen specific)
Ig E

• IgE antibodies are tetramers- 2 heavy and 2 light chains
• Heavy chains : V1 C4
• Light chains : V1 C1
• Connected by interchain disulphide bonds
• C : interact with FCRI and CD23
Ig E

- Lowest level, shortest life span
- Production is tightly controlled
- No transplacental transfer
- Low level in cord blood, peak in adolescence, decreases thereafter
- Produced predom in B cells in mucosal related lymph tissue
- Requires the B cell to commit to irreversible genetic change (lineage/class switch)
Ig E

- Elevated in atopic individuals genetic / environmental factors
- Markedly raised: eczema, aspergillosis (trend useful as guide to response to treatment)
- NB: presence of IgE is not automatically indicative of disease
Ig E synthesis

• 2 signals required for IgE synthesis, both provided by T cells
• Allergen -> antigen presenting cell (dendritic or B cell) -> peptide/MHC II presented to T cell
• Signal 1: IL4 or IL13
 germline transcription, via STAT 6
• Signal 2: CD 154, CD 40 ligand
 activation of APC: B cells -> class switch to IgE, followed by secretion of allergen specific IgE
IgE receptor

- **High affinity** (FceRI) expressed on mast cells, basophils, APC (lower levels)
 - The α chain of FceRI binds to the Fc portion (C3 domain) of IgE
 - Exert function via cytoplasmic tyrosine kinase

- **Low affinity** (FceRII; CD23) expressed on the surface of B/T cells, macrophages, monocytes, eosinophils, Langerhans cells
 - Large transmembrane protein

- Both upregulated by IL4 and IgE
Clinical Manifestations

- Allergen-> crosslinking of receptor bound IgE
- Cascade of signaling events: immediate response
- Release of preformed mediators: histamine, proteoglycans, proteases
- Transcription of cytokines
- De novo synthesis of prostaglandins and leucotrienes
- 6-24 hours later: ongoing leucocytic influx
Clinical manifestations 2

a Internalization

IgE FcεRI

Allergen

MHC class II

APC

b Degranulation and release

IgE FcεRII

Prostaglandins

Leukotrienes

Cytokines

Histamine

Nature Reviews | Immunology

IgE Naidoo March 2012
IgE measurements

• Serum assays – allergen bound to a surface -> to which IgE binds.
• Bound IgE quantified (anti-IgE)
• Influenced by: amount, quality and stability of allergen, affinity of anti-IgE, interference by allergen specific IgG
 Also: allergen exposure, recent major reaction, immunotherapy

NB- specific affinity and activity: not reflected in assay, but affect biological activity
Clinical manifestations 2

(a) Internalization

- IgE
- FcεRI
- Allergen
- MHC class II

(b) Degranulation and release

- Allergen
- Mast cell
- Prostaglandins
- Leukotrienes
- Cytokines
- Histamine

Nature Reviews | Immunology
IgE – treatment implications

• Therapies directed at decreasing IgE effects have been developed
• Murine anti-IgE ABS binds to the C3 region of free IgE Fc fragment and decreases the free IgE available to bind to IgE receptors (2 anti-IgE per IgE molecule)
• Nb: effect on IgE assays (total Ig E raised)
• Licensed for asthma/rhinitis but used in wide variety of conditions
• Cost prohibitive
• Risk of anaphylaxis
• Fascinating molecule
• Most commonly associated with atopic disease but is also associated with one of the primary immunodeficiencies
• Hyper IgE with immunodeficiency
 “Job’s Syndrome”
Hyper Ig E Syndrome

• Spectrum of disease
• More severe- early in life
• In others - delayed diagnosis, gen < 20
• Skin- usually severe eczema and superficial infections (bacterial and candida)
• Sinopulmonary infections (staph and haemophilus)
• NB: post –imflammatory pneumatoceles
• Facies: hypertelorism, broad mandible, bulbous nose
Hyper Ig E Syndrome

- Bony abnormality – fractures or loss of bone density
- Abnormal dentition: failure of 1 dental deciduousness -> either failure of 2 dentition or retention of both sets
- CNS – infection, vasculitis, CVA (stenosis, occlusion, aneurysm)
- Susceptibility to malignancy (AR) lymphoma, leukaemia, squamous cell Ca
Hyper Ig E Syndrome

<table>
<thead>
<tr>
<th>Condition</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eczema</td>
<td>100%</td>
</tr>
<tr>
<td>Facies</td>
<td>100%</td>
</tr>
<tr>
<td>Superficial skin infection</td>
<td>87%</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>87%</td>
</tr>
<tr>
<td>Mucocutaneous candida</td>
<td>83%</td>
</tr>
<tr>
<td>Lung cysts</td>
<td>77%</td>
</tr>
<tr>
<td>Scoliosis</td>
<td>76%</td>
</tr>
<tr>
<td>Delayed dental exfoliation</td>
<td>72%</td>
</tr>
<tr>
<td>Pathological fracture</td>
<td>57%</td>
</tr>
</tbody>
</table>
Hyper Ig E Syndrome facies
Hyper Ig E Syndrome - chest

Fig. 1.— Radiografía simple de tórax
Hyper Ig E Syndrome - skin
HyperIgE – Bone

- skin
Hyper Ig E Syndrome

• Genetics – multiple modes of inheritance, variable penetrance
 AD (4q)
 AR kindred
 sporadic
• Prevalence: uncertain, equal in both sexes
• Presentation: usually under 20,
Hyper Ig E Syndrome - workup

• IgE : > 10 standard deviations above age-appropriate norms (often > 100 times)
• FBC: absolute eosinophilia, preserved neutrophils and lymphs.
• Imaging : CXR/CT Chest
 Sinus CT
 Xray bones / Bone scan
 CT/MRI brain if CNS symptoms
Hyper IgE Workup

• Bronchoscopy: recurrent infection Staph Aureus, Haemophilus Influenza, Aspergillus, Gram – org (Pseudomonas) Opportunistic infections

• Histology: Prominent eosinophils (skin, lung, and other localized inflammatory processes)
Hyper IgE - Management

Multidisciplinary
Medical - sinopulmonary infection and seq, nutrition and development
Surgical: abscesses, fractures, bony deformities, osteomyelitis, broncho-pulm fistulae
Dermatology: eczema can be intractable
ID: recc infection: antibiotic choices, prophylaxis, resistance etc
Dentist
Genetics: counselling
Hyper IgE – Mx 2

Skin: emollients, topical corticosteroids, prompt treatment of superadded infection
Steroid sparing, Wet wraps

Infection: Clox/Fluclox
MRSA (hosp acquired)
Anti-staph measures
NB: Other bacteria, fungi, protozoa, mycobacteria
Hyper IgE – Mortality

- Adulthood (survival reported up to 60)
- Chronic pulmonary disease
- Superinfected lung abscesses
- CNS events
- Malignancy
Hyper Ig E Syndrome - differential diagnosis (conserved clinical picture and very high IGE)

• High IgE + ID: Wiskott-Aldrich syndrome, Omenn syndrome, immune dysregulation, Common Variable ID or Chronic granulomatous disease
• High IgE: parasitic infections and nonparasitic infections (e.g., EBV, cytomegalovirus, HIV, TB)
• Inflammatory diseases (Churg-Strauss vasculitis, and Kawasaki disease),
• Haematologic malignancies (Hodgkins lymphoma and IgE myeloma),
• Skin diseases (Netherton syndrome and bullous pemphigoid)
• cystic fibrosis, nephrotic syndrome
Conclusion

- Condition with multi-system involvement
- Early diagnosis – optimise infection control and preserve lung function
- Lifespan fair
- Morbidity can be significantly reduced by comprehensive and meticulous care

IgE Naidoo March 2012
Immune system Overview

- Anatomic-mucociliary
- Innate immunity:
 - cellular arm: pathogen associated molecular patterns eg lipopolysaccharides, mannans, DNA sequences (macrophages, NK cells, poly’s)
 - serum protein arm: rapid response, sequential patterns (complement, cytokines, acute phase proteins)

IgE Naidoo March 2012
Overview 2

• Adaptive immunity - antigen specific responses and immunologic memory.
• T cells: kill virus infected/ cancer cells, B cell activation, interact with innate immune system.
• B cells: immunoglobulins – neutralize toxins, opsonisation, upregulate innate immune responses
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas.
Immunoglobulin Synthesis

Title

• Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas.

• Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus et magna. Fusce sed sem sed magna suscipit egestas.