Spina Bifida – Management of the Neuropathic Bladder

Stuart B. Bauer, MD

President, ICCS

Department of Urology
Children’s Hospital Boston

Disclaimer
These slides are produced by the International Children’s Continence Society (ICCS) and may be freely used for educational purposes as long as they are not altered and the source is acknowledged.
What have we learned in the last 30 years?

The only treatment when this picture was taken was urinary diversion

Causes of Neurogenic Bladder Dysfunction in Children

- Myelodysplasia 95%
 - Open spinal cord lesions - 85%
 - Occult spinal dysraphism - 10%
- Sacral Agenesis 3%
- Spinal Cord Injury 1%
- Associated Conditions 1%
 (Imperforate anus, VATER Syndrome)
Myelomeningocele - Back Lesion

Spina Bifida

Diagram showing the development of the neural tube and its components.
Spina Bifida - Types

Spina Bifida Occulta Meningocele Myelomeningocele

10-20% of healthy individuals Least common Most severe & most common

Spina Bifida - Incidence

• 0.7/1,000 U.S. live births
 ? reduction from 1/1,000 but unknown if underreporting
 Most common permanently disabling birth defect
 Each day 8 babies are born in the US with SB or similar brain/spine defect!

• Variable with ethnic group
 Higher in Caucasi ans & Hispanics
 Highest incidence in immigrants from Ireland
Spina Bifida - Incidence

• The most likely site for meningocele development is:
 Lumbar, Sacral, Thoracic and Cervical
• 5% risk of familial occurrence
• Folic acid (4 mgs/day) reduces but doesn’t eliminate
 the risk of a child being born with MMC

Change in Bladder Appearance Over Time
Upper Motor Neuron Urodynamic Study

Incidences of Urinary Tract Deterioration in Newborns with Myelodysplasia Followed Expectantly

<table>
<thead>
<tr>
<th></th>
<th>No.</th>
<th>Deteriorated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synergy</td>
<td>14</td>
<td>2 (14%)</td>
</tr>
<tr>
<td>No Activity</td>
<td>23</td>
<td>7 (30%)</td>
</tr>
<tr>
<td>Dyssynergy</td>
<td>34</td>
<td>18 (53%)</td>
</tr>
<tr>
<td></td>
<td>71</td>
<td>27 (38%)</td>
</tr>
</tbody>
</table>

*excludes 8 with deterioration at birth
Time of Urinary Tract Deterioration in Relation to Age

3 year old girl with myelodysplasia on no specific treatment
Response to Therapy

Incidence of Urinary Tract Deterioration in Newborns with Myelodysplasia Treated Proactively

<table>
<thead>
<tr>
<th>Category</th>
<th>No.</th>
<th>Deteriorated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synergy</td>
<td>39</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>No Activity</td>
<td>53</td>
<td>10 (19%)</td>
</tr>
<tr>
<td>Dyssynergy</td>
<td>30</td>
<td>7 (23%)</td>
</tr>
<tr>
<td>Total</td>
<td>122</td>
<td>18 (15%)</td>
</tr>
</tbody>
</table>

* excludes 24 with deterioration at birth
Subsequent Deterioration
Expectant vs Prophylactic Therapy

Current Treatment of Newborns with
Myelodysplasia

- Residual urine after spontaneous voiding
- Allow voiding if able to empty at low pressure
- Credé voiding if no reflux and sphincter is completely denervated (un-reactive to stimuli)
- Begin CIC in presence of reflux, and / or high pressure voiding
- Add anticholinergics if filling / voiding pressures are high
Protocol for the Evaluation of Children with Myelodysplasia

- Residual urine (after a spontaneous void, or if ↑ after a Credé maneuver)
- Urine culture
- Serum creatinine
- Neurologic examination
- Renal ultrasound
- Urodynamic studies
- Voiding cystourethrogram

Current Management Based on Urodynamic Findings

- Observation
 - good compliance
 - low LPP
 - severe denervation in the sphincter
 - minimal PVR
- CIC
 - high LPP or high voiding pressure
 - ↑ PVR
- Anticholinergics
 - poor compliance (pr. ≥ 20 cm H_2O at capacity)
 - DO during filling ➔ wetting between CIC
 - high voiding pressure (pr. ≥ 75 cm H_2O)
Indications for Proactive Treatment in Myelodysplasia

• Clean intermittent catheterization
 High voiding pressures 2° to dyssynergia
 High leak point pressure in patients with fibrosis from sphincter denervation

• Anticholinergic medication
 High detrusor voiding pressure (> 100 cm H₂O)
 Poor compliance - high detrusor filling pressure (> 40 cm H₂O at functional capacity)

Types of Medication for Proactive Treatment in Myelodysplasia

• Oxybutynin
 1 mg / year of age BID - TID
 Proportionately less for those < 1 year

• Tolterodine
 0.05 mg / kg / day in divided doses Q 12 hours

• Trospium
 0.3 mg / kg / day in divided doses Q 12 hours
Incidence of Reflux in Myelodysplastic Children Followed Expectantly

Newborn Afterwards
4 (5%) \rightarrow 18 (23%)

Cumulative Incidence of Reflux in Expectant vs Proactive Treatment

Expectant Tx

Prophylactic Tx

\[P = < 0.05 \]
The Long-term Effects of Proactive Treatment in Infants with Myelodysplasia

- Hydronephrosis
 - In children at risk 4 (3%)
 - In children not at risk 2 (2%)

Effect of Proactive Treatment

Ultrasound 15 years later on proactive treatment
The Long-term Effects of Proactive Treatment in Infants with Myelodysplasia

Subsequent need for augmentation cystoplasty

<table>
<thead>
<tr>
<th>Condition</th>
<th>Expectant TX no. = 44</th>
<th>Proactive TX no. = 122</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydronephrosis</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Incontinence</td>
<td>6 (18%)</td>
<td>3 (4%)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>
The Long-term Effects of Proactive Treatment in Infants with Myelodysplasia

- Continence in 79 children on treatment

 Dry on CIC + medication 58 (73%)
 Augmentation 3 (4%)

Prophylactic versus Expectant Treatment in Children with Myelodysplasia

The need for augmentation cystoplasty is significantly reduced when children are started on prophylactic treatment before they are 1 year (11%) versus 4 years (27%)

Wu, et al., J Urol., 157: 2295, 1997
The Long-term Effects of Proactive Treatment in Infants with Myelodysplasia

• Complications from CIC treatment
 Meatitis 0
 Urethral injury 1
 Difficulty with CIC 1
 Side effects from medication 0
 Failure to accept program 0

Conclusions from Proactive Treatment in Children with Myelodysplasia

• It is safe
• It effectively prevents reflux, hydronephrosis and a rise in creatinine
• It reduces the need for augmentation cystoplasty
• It leads to earlier and more universal acceptance of CIC
• It promotes independence at an earlier age
Management of Reflux

- Continuous antibiotics
- Strict CIC schedule
- Anticholinergic meds if hypertonicity +/- detrusor overactivity
- Antireflux surgery if:
 - Recurrent UTI
 - Worsening hydrenephrosis
 - Progressive / new onset scarring on DMSA scan
 - Surgery to increase bladder outlet resistance

Management of Reflux

Anticholinergic meds help to lower detrusor filling pressure and abolish DO, reducing the presence and grade of reflux; resolution rates approach 65%
Management of Incontinence

• Poor bladder dynamics
 Anticholinergic agents
 Botulinum toxin
 Augmentation cystoplasty
• Inadequate bladder outlet resistance
 α sympathomimetics
 Endoscopic injection of bulking agents
 Fascial sling suspension
 Artificial urinary sphincter implantation

Signs of an Occult Spinal Dysraphism
Pathologic Conditions of Occult Spinal Dysraphism

- Lipoma / lipomeningocele
- Split cord syndromes (diastematomyelia)
- Dermal sinus malformation
- Thickened (tight) filum terminale
- Anterior meningocele (Currarino Triad)
 - Pre-sacral mass, sacral agenesis + ano-rectal malformation
- Imperforate anus (30%)

Radiologic Appearance of Tethered Cord
Urologic Presentation by Age

- **Infancy**
 - Usually asymptomatic
 - 90% have a cutaneous manifestation
- **Childhood**
 - Difficulty with toilet training
 - Persistent wetting / urgency after toilet training
 - Recurrent UTI
 - Lower extremity changes
- **Adolescent**
 - Wetting and / or UTI with pubertal growth

Urodynamic Studies in Occult Spinal Dysraphism

- Preoperative assessment determines exact function of the lower urinary tract
 - 20 - 35% normal neuro exam have abnormal UDS
 - 10 - 15% abnormal neuro exam have normal UDS
- Provides functional information not definable on spinal MRI
- If child is observed sequential studies are useful
- Assesses effects of early surgical intervention
 - 60% of young vs 9% of older children improve post-op
 - 68% remain stable but 25% deteriorate over time
Improvement in Function with Untethering Surgery

![Graph showing improvement in function with untethering surgery.](image)

Need for 2° Untethering Related to Age at Initial Surgery

![Graph showing need for secondary untethering related to age at initial surgery.](image)
Tethered Spinal Cord –
Conclusions

- No specific urologic symptom or sign is indicative of a tethered cord
- No combination of neuro-urologic symptoms can predict a spinal cord malformation
- If diagnosed and treated early, un-tethering surgery can improve urologic symptoms in most cases
- Early corrective surgery seems to prevent late 2° re-tethering

Sacral Agenesis
Skin and Radiologic Appearances
Sacral Agenesis

Note:
absence of lower sacral vertebra

Note:
abrupt cut off of conus at T 12

X-ray Faces in Sacral Agenesis

Upper motor neuron lesion with closed ext. sphincter + reflux from dyssynergy

Lower motor neuron lesion with open bladder neck, no reflux + wetting
Urodynamic Findings in Sacral Agenesis

• 1% of insulin-dependent diabetics have a child with sacral agenesis; 16% of affected babies have an insulin-dependent mother

• Types of lower urinary tract function found
 38% have an upper motor neuron lesion (UMN)
 43% have a lower motor neuron lesion (LMN)
 19% have normal lower urinary tract function

• Level of bony defect does not correlate with type of bladder or sphincter function found

• Presence of a B-C reflex has an 80% correlation with type of neuro-urologic function present

• Lesion tend to be stable and rarely progress
α adrenergic receptors

Lower urinary tract
- Bladder neck
- Urethra

Smooth muscle contraction
↑ Outlet resistance

α blocking agents - usefulness

Conclusions:
- Underactive bladder with incomplete emptying
 - Alternative prior to CIC
 - Alternative to biofeedback retraining
 - May facilitate behavioral modification
- Neuropathic bladder with poor compliance
 - ↓ LPP
 - ↑ compliance
 - ↓ hydrenephrosis
 - May ↓ grade of reflux
 - Protects upper urinary tract
- Limitations
 - Need randomized, placebo controlled double-blind studies in uniform populations using standardized testing to evaluate the true effectiveness of this class of drugs
Percutaneous Tibial Nerve Stimulation (PTNS)

34 G needle inserted on the tibial nerve ~ 2 cm cephalad to medial malleolus

Surface electrode on medial side of foot

Portable stimulator provides pulsations between needle & electrode (frequency 20 Hz, 200 microseconds, up to 10 mA)

Correct placement → flexion (or fanning) of great toe

Stimulation performed weekly for 30 min x 12 sessions

Percutaneous Tibial Nerve Stimulation (PTNS)

• Bower, Hoebeke 1st reported responses in children with OAB (2001)
• DeGennaro: 23 (10 OAB; 7 retention; 6 NBD)
 - Results (OAB):
 • 80% ↓ OAB
 • 44% resolution of incontinence
 • 62.5% with ↓ CBC → normalized
 - Results (retention):
 • 72% improvement in symptoms
 • PVR 109 ml (pre-Tx) → ↓ 66% w 0 ml in 50%
 • PQ_{max} 33.8 → 50.2 cm H$_2$O ($p = 0.09$)
 • Q_{max} 6.2 → 12.3 ml/sec ($p = 0.05$)
 - Results (NBD):
 • CBC 239 → 289 ml
 • PVR 173 → 154 ml

Lumbo-sacral Nerve Re-routing for Spina Bifida

- Artificial voiding reflex using
 Micro-anastomosis of healthy lumbar motor root to normal sacral motor root
- At follow-up stimulation of sacral dermatome of re-routed nerve → bladder contraction & voiding
- Xiao – 20 pts followed 1 year → 85% able to void w/o CIC
 both OAB and UB pts responded
 bladder capacity doubled
 bladder compliance improved
 residual urine ↓ 100 → 57 ml
 bladder sphincter synergy during voiding

Lumbo-sacral Nerve Re-routing for Spina Bifida

- 9 pts - neurologic levels from L3 to S3
- Follow-up 1 year
 CBC: ↑ 6; no change or ↓ 4
 OAB: ↓ 5 of 7; none developed
 bladder sensation of bladder filling: 1 developed
 voiding: 5 of 7 developed (V Vol avg 133 ml; pvr mean 119 ml; Q max 10)
 bladder compliance: ↑ 16.1 → 21.8
 2 pts voided to completion on stimulation + off all anticholinergic meds
 1 F permanent foot drop

Future Prospects for Improving Neuropathic Lower Urinary Tract Function

Caution!

Today’s panacea may be tomorrow’s curse